This website uses cookies. By continuing to use this website you are agreeing to our use of cookies. 



Coral larval dispersal simulations for the southwestern Indian Ocean (1993-2020)

Update Frequency: Not Planned
Latest Data Update: 2023-01-09
Status: Completed
Online Status: ONLINE
Publication State: Citable
Publication Date: 2023-06-06
DOI Publication Date: 2023-06-06
Download Stats: last 12 months
Dataset Size: 10.11K Files | 5TB


This dataset, contributing towards the Marine dispersal and retention in the western Indian Ocean project, contains raw coral larval connectivity data computed by the SECoW (Simulating Ecosystem Connectivity with WINDS) dispersal model. 1024 virtual coral larvae are generated every day from 1993-2020 at c. 8000 coral reef sites across the southwestern Indian Ocean, and advected for 120 days following surface-currents from the 1/50° WINDS-M simulation ( using OceanParcels. A larval settling ‘event’ is defined as a time interval during which a virtual coral larva is continuously within a 1/50° coral reef cell, between 1-120 days after spawning. SECoW records the arrival time, event duration, and cell index for every settling event (up to a maximum of 60). From these data, larval settling fluxes, incorporating larval mortality and competency, can be computed through post-processing with SECoW. These data can therefore be adapted to a variety of biological parameters at a fraction of the computational cost required to recompute larval trajectories. The resulting coral reef connectivity predictions will be useful for marine practitioners working on coral reef conservation across the southwestern Indian Ocean. The data were produced as part of the Marine Dispersal and Retention in the Western Indian Ocean project funded by the Natural Environment Research Council (NERC) grant NE/S007474/1. See linked online references on this record for cited items given above.

Citable as:  Vogt-Vincent, N.; Johnson, H. (2023): Coral larval dispersal simulations for the southwestern Indian Ocean (1993-2020). NERC British Oceanographic Data Centre, 06 June 2023. doi:10.5285/2727525bf80c4798b7319116a0c15353.
Abbreviation: Not defined
Keywords: Indian Ocean, Coral, Reef, Larvae, Dispersal, Connectivity, Lagrangian, Monsoon, Model


Previous Info:
No news update for this record
Previously used record identifiers:
No related previous identifiers.
Access rules:
Public data: access to these data is available to both registered and non-registered users.
Use of these data is covered by the following licence: When using these data you must cite them correctly using the citation given on the CEDA Data Catalogue record.
Data lineage:

This dataset consists of modelled large scale dispersal experiments across the southwestern Indian Ocean. The simulations were funded through PhD project NE/S007474/1, Marine dispersal and retention in the western Indian Ocean, held by Noam Vogt-Vincent who was supervised by Helen Johnson, both at University of Oxford. The outputs are archived on the British Oceanographic Data Centre (BODC)'s space at the Centre for Environmental Data Analysis (CEDA) and assigned a DOI. No quality control procedures were applied by BODC.

Data Quality:
The data are provided as-is with no quality control undertaken by the British Oceanographic Data Centre (BODC). The data suppliers have not indicated if any quality control has been undertaken on these data.
File Format:
Data are CF-Compliant NetCDF formatted data files

Process overview

This dataset was generated by the computation detailed below.

Ocean Parcels


The OceanParcels project develops Parcels (Probably A Really Computationally Efficient Lagrangian Simulator), a set of Python classes and methods to create customisable particle tracking simulations using output from Ocean Circulation models. Parcels can be used to track passive and active particulates such as water, plankton, plastic and fish. The code from the OceanParcels project is licensed under an open source MIT license and can be downloaded from or installed via

Input Description


Output Description


Software Reference


  • var_id: dt0
  • var_id: dt1
  • var_id: dt10
  • var_id: dt11
  • var_id: dt12
  • var_id: dt13
  • var_id: dt14
  • var_id: dt15
  • var_id: dt16
  • var_id: dt17
  • var_id: dt18
  • var_id: dt19
  • var_id: dt2
  • var_id: dt20
  • var_id: dt21
  • var_id: dt22
  • var_id: dt23
  • var_id: dt24
  • var_id: dt25
  • var_id: dt26
  • var_id: dt27
  • var_id: dt28
  • var_id: dt29
  • var_id: dt3
  • var_id: dt30
  • var_id: dt31
  • var_id: dt32
  • var_id: dt33
  • var_id: dt34
  • var_id: dt35
  • var_id: dt36
  • var_id: dt37
  • var_id: dt38
  • var_id: dt39
  • var_id: dt4
  • var_id: dt40
  • var_id: dt41
  • var_id: dt42
  • var_id: dt43
  • var_id: dt44
  • var_id: dt45
  • var_id: dt46
  • var_id: dt47
  • var_id: dt48
  • var_id: dt49
  • var_id: dt5
  • var_id: dt50
  • var_id: dt51
  • var_id: dt52
  • var_id: dt53
  • var_id: dt54
  • var_id: dt55
  • var_id: dt56
  • var_id: dt57
  • var_id: dt58
  • var_id: dt59
  • var_id: dt6
  • var_id: dt7
  • var_id: dt8
  • var_id: dt9
  • var_id: e_num
  • var_id: i0
  • var_id: i1
  • var_id: i10
  • var_id: i11
  • var_id: i12
  • var_id: i13
  • var_id: i14
  • var_id: i15
  • var_id: i16
  • var_id: i17
  • var_id: i18
  • var_id: i19
  • var_id: i2
  • var_id: i20
  • var_id: i21
  • var_id: i22
  • var_id: i23
  • var_id: i24
  • var_id: i25
  • var_id: i26
  • var_id: i27
  • var_id: i28
  • var_id: i29
  • var_id: i3
  • var_id: i30
  • var_id: i31
  • var_id: i32
  • var_id: i33
  • var_id: i34
  • var_id: i35
  • var_id: i36
  • var_id: i37
  • var_id: i38
  • var_id: i39
  • var_id: i4
  • var_id: i40
  • var_id: i41
  • var_id: i42
  • var_id: i43
  • var_id: i44
  • var_id: i45
  • var_id: i46
  • var_id: i47
  • var_id: i48
  • var_id: i49
  • var_id: i5
  • var_id: i50
  • var_id: i51
  • var_id: i52
  • var_id: i53
  • var_id: i54
  • var_id: i55
  • var_id: i56
  • var_id: i57
  • var_id: i58
  • var_id: i59
  • var_id: i6
  • var_id: i7
  • var_id: i8
  • var_id: i9
  • var_id: idx0
  • var_id: lat0
  • var_id: lon0
  • var_id: traj
  • var_id: ts0
  • var_id: ts1
  • var_id: ts10
  • var_id: ts11
  • var_id: ts12
  • var_id: ts13
  • var_id: ts14
  • var_id: ts15
  • var_id: ts16
  • var_id: ts17
  • var_id: ts18
  • var_id: ts19
  • var_id: ts2
  • var_id: ts20
  • var_id: ts21
  • var_id: ts22
  • var_id: ts23
  • var_id: ts24
  • var_id: ts25
  • var_id: ts26
  • var_id: ts27
  • var_id: ts28
  • var_id: ts29
  • var_id: ts3
  • var_id: ts30
  • var_id: ts31
  • var_id: ts32
  • var_id: ts33
  • var_id: ts34
  • var_id: ts35
  • var_id: ts36
  • var_id: ts37
  • var_id: ts38
  • var_id: ts39
  • var_id: ts4
  • var_id: ts40
  • var_id: ts41
  • var_id: ts42
  • var_id: ts43
  • var_id: ts44
  • var_id: ts45
  • var_id: ts46
  • var_id: ts47
  • var_id: ts48
  • var_id: ts49
  • var_id: ts5
  • var_id: ts50
  • var_id: ts51
  • var_id: ts52
  • var_id: ts53
  • var_id: ts54
  • var_id: ts55
  • var_id: ts56
  • var_id: ts57
  • var_id: ts58
  • var_id: ts59
  • var_id: ts6
  • var_id: ts7
  • var_id: ts8
  • var_id: ts9

Co-ordinate Variables

Temporal Range
Start time:
End time:
Geographic Extent