This website uses cookies. By continuing to use this website you are agreeing to our use of cookies. 

Dataset

 

ACCMIP: NIWA (National Institute of Water and Atmospheric Research, New Zealand) climate model output

Update Frequency: Not Planned
Latest Data Update: 2020-03-20
Status: Completed
Online Status: ONLINE
Publication State: Published
Publication Date: 2011-08-24
Download Stats: last 12 months
Dataset Size: 17.28K Files | 148GB

Abstract

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under International Geosphere Bisosphere Programme (IGBP) and World Climate Research Programme (WCRP). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACC-MIP) consists of several sets of simulations that have were designed to facilitate useful evaluation and comparison of the AR5 (Intergovernmental Committee on Climate Change Assessment Report 5) transient climate model simulations.

This dataset contains measurements from climate simulations from NIWA of the 20th century and the future projections, which output feedback between dynamics, chemistry and radiation in every model time step. The data are collected from running the latest set of ozone precursor emissions scenarios, which output tropospheric ozone changes from 1850 to 2100.

Citable as:  National Institute of Water and Atmospheric Research (2011): ACCMIP: NIWA (National Institute of Water and Atmospheric Research, New Zealand) climate model output. NCAS British Atmospheric Data Centre, date of citation. https://catalogue.ceda.ac.uk/uuid/3c5beadb79d969bcf4796b0a1db0bea6
Abbreviation: Not defined
Keywords: ACCMIP, Model, chemistry, climate

Details

Previous Info:
No news update for this record
Previously used record identifiers:
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_2fdc07f2-edd8-11e1-9e80-00163e251233
Access rules:
Public data: access to these data is available to both registered and non-registered users.
Use of these data is covered by the following licence: http://creativecommons.org/licenses/by/4.0/. When using these data you must cite them correctly using the citation given on the CEDA Data Catalogue record.
Data lineage:

The ACCMIP model output uses CMOR (Climate Model Output Rewriter) to convert data to CF netCDF. The CMOR conversion is performed by the individual modelling groups and the resulting CF netCDF files are archived at CEDA.

Data Quality:
ACCMIP data arrives direct from the modelling centres. A versioning system ensures that new versions of data are placed in separate version directories.
File Format:
Data are netCDF formatted

Process overview

This dataset was generated by the computation detailed below.
Title

UM-CAM Model deployed on NIWA (National Institute of Water and Atmospheric Research, New Zealand) Computers

Abstract

This computation involved: UM-CAM Model deployed on NIWA (National Institute of Water and Atmospheric Research, New Zealand) Computers. The UM-CAM model explores how changes in the levels and locations of ozone precursor emissions, (such as nitrogen oxides NO and NO2; referred to as NOx), carbon monoxide (CO) and volatile organic compounds (VOCs), including methane, could affect tropospheric ozone abundances, from the pre-industrial period to future projections.

The UM-CAM model explores how changes in the levels and locations of ozone precursor emissions, (such as nitrogen oxides NO and NO; referred to as NO, carbon monoxide (CO) and volatile organic compounds (VOCs), including methane, could tropospheric ozone abundances, from the pre-industrial period to future projections.

NIWA (National Institute of Water and Atmospheric Research, New Zealand) are using the atmospheric component of the Hadley Centre’s model to investigate causes of natural climate variability in the Southern Hemisphere. They are also using a regional climate model (RCM) to simulate climate change over New Zealand.

Three dimensional models which simulate the atmosphere are called Atmospheric General Circulation Models (AGCMs), and have been developed from weather forecasting models. Similarly, Ocean General Circulation Models (OGCMs) have been developed to simulate the ocean. These models typically divide the atmosphere or ocean into a horizontal grid with a horizontal resolution of latitude and longitude, with 10 to 20 layers in the vertical. Both AGCMs and OGCMs have been used in "stand-alone" mode, but can also be used together as Atmosphere Ocean General Circulation models AOGCMs.

NIWA (National Institute of Water and Atmospheric Research, New Zealand) are using the atmospheric component of the Hadley Centre;s model to investigate causes of natural climate variability in the Southern Hemisphere.

Computer power is still a limitation for GCM (Global Climate Models) simulations extending over hundreds of years. As a consequence the resolution is fairly coarse (typically 176; latitude grid size in the IPCC 2007 models). One solution to this is to run a regional climate model (RCM), which represents a limited area of the globe at a much higher resolution (10 to 30 km). NIWA uses a RCM to simulate climate change over New Zealand.

Input Description

None

Output Description

None

Software Reference

None

  • units: K
  • standard_name: air_temperature
  • var_id: temp
  • long_name: Air Temperature
  • names: air_temperature, Air Temperature
  • units: kg m-2 s-1
  • long_name: Anthropogenic Emission Rate of NOx
  • var_id: emianox
  • names: Anthropogenic Emission Rate of NOx
  • units: m2
  • long_name: Atmosphere Grid-Cell Area
  • standard_name: cell_area
  • var_id: areacella
  • names: Atmosphere Grid-Cell Area, cell_area
  • units: 1
  • long_name: CH4 Volume Mixing Ratio
  • standard_name: mole_fraction_of_methane_in_air
  • var_id: vmrch4
  • names: CH4 Volume Mixing Ratio, mole_fraction_of_methane_in_air
  • units: 1
  • long_name: CO Volume Mixing Ratio
  • standard_name: mole_fraction_of_carbon_monoxide_in_air
  • var_id: vmrco
  • names: CO Volume Mixing Ratio, mole_fraction_of_carbon_monoxide_in_air
  • units: mole m-3 s-1
  • long_name: Chemical Gross Loss Rate of O3
  • var_id: losso3
  • names: Chemical Gross Loss Rate of O3
  • units: mole m-3 s-1
  • long_name: Chemical Gross Production Rate of O1D
  • var_id: prodo1d
  • names: Chemical Gross Production Rate of O1D
  • units: mole m-3 s-1
  • long_name: Chemical Gross Production Rate of O3
  • var_id: prodo3
  • names: Chemical Gross Production Rate of O3
  • units: mole m-3 s-1
  • long_name: Chemical Gross Production Rate of OH
  • var_id: prodoh
  • names: Chemical Gross Production Rate of OH
  • units: mole m-3 s-1
  • long_name: Chemical Loss Rate of O3 via O3+Alkenes
  • var_id: losso3viaalkenes
  • names: Chemical Loss Rate of O3 via O3+Alkenes
  • units: mole m-3 s-1
  • long_name: Chemical Loss Rate of O3 via O3+HO2
  • var_id: losso3viaho2
  • names: Chemical Loss Rate of O3 via O3+HO2
  • units: mole m-3 s-1
  • long_name: Chemical Loss Rate of O3 via O3+OH
  • var_id: losso3viaoh
  • names: Chemical Loss Rate of O3 via O3+OH
  • units: mole m-3 s-1
  • long_name: Chemical Production Rate of O3 via CH3O2+NO
  • var_id: prodo3viach3o2
  • names: Chemical Production Rate of O3 via CH3O2+NO
  • units: mole m-3 s-1
  • long_name: Chemical Production Rate of O3 via HO2+NO
  • var_id: prodo3viaho2
  • names: Chemical Production Rate of O3 via HO2+NO
  • units: mole m-3 s-1
  • long_name: Chemical Production Rate of O3 via RO2+NO
  • var_id: prodo3viaro2
  • names: Chemical Production Rate of O3 via RO2+NO
  • units: kg m-2 s-1
  • long_name: Convective Updraft
  • standard_name: updraught_convective_mass_flux
  • var_id: mcu
  • names: Convective Updraft, updraught_convective_mass_flux
  • units: kg m-2 s-1
  • long_name: Dry Deposition Rate of HNO3
  • standard_name: tendency_of_atmosphere_mass_content_of_nitric_acid_due_to_dry_deposition
  • var_id: dryhno3
  • names: tendency_of_atmosphere_mass_content_of_nitric_acid_due_to_dry_deposition, Dry Deposition Rate of HNO3
  • units: kg m-2 s-1
  • long_name: Dry Deposition Rate of NO2
  • standard_name: tendency_of_atmosphere_mass_content_of_nitrogen_dioxide_due_to_dry_deposition
  • var_id: dryno2
  • names: tendency_of_atmosphere_mass_content_of_nitrogen_dioxide_due_to_dry_deposition, Dry Deposition Rate of NO2
  • units: kg m-2 s-1
  • long_name: Dry Deposition Rate of NOy
  • var_id: drynoy
  • names: Dry Deposition Rate of NOy
  • units: kg m-2 s-1
  • long_name: Dry Deposition Rate of O3
  • standard_name: tendency_of_atmosphere_mass_content_of_ozone_due_to_dry_deposition
  • var_id: dryo3
  • names: tendency_of_atmosphere_mass_content_of_ozone_due_to_dry_deposition, Dry Deposition Rate of O3
  • units: 1
  • long_name: Formaldehyde Volume Mixing Ratio
  • standard_name: mole_fraction_of_formaldehyde_in_air
  • var_id: vmrhcho
  • names: mole_fraction_of_formaldehyde_in_air, Formaldehyde Volume Mixing Ratio
  • units: m
  • long_name: Grid Cell Geometric Thickness
  • var_id: dh
  • names: Grid Cell Geometric Thickness
  • units: 1
  • long_name: HNO3 Volume Mixing Ratio
  • standard_name: mole_fraction_of_nitric_acid_in_air
  • var_id: vmrhno3
  • names: mole_fraction_of_nitric_acid_in_air, HNO3 Volume Mixing Ratio
  • units: 1
  • long_name: Isoprene Volume Mixing Ratio
  • standard_name: mole_fraction_of_isoprene_in_air
  • var_id: vmrisop
  • names: Isoprene Volume Mixing Ratio, mole_fraction_of_isoprene_in_air
  • units: 1
  • long_name: Land Area Fraction
  • standard_name: land_area_fraction
  • var_id: landf
  • names: land_area_fraction, Land Area Fraction
  • units: kg m-2 s-1
  • long_name: Layer-intgrated Lightning Production of NOx
  • var_id: emilnox
  • names: Layer-intgrated Lightning Production of NOx
  • units: count km-2 s-1
  • long_name: Lightning Flash Rate
  • var_id: flashrate
  • names: Lightning Flash Rate
  • units: 1
  • long_name: NO Volume Mixing Ratio
  • standard_name: mole_fraction_of_nitrogen_monoxide_in_air
  • var_id: vmrno
  • names: NO Volume Mixing Ratio, mole_fraction_of_nitrogen_monoxide_in_air
  • units: 1
  • long_name: NO2 Volume Mixing Ratio
  • standard_name: mole_fraction_of_nitrogen_dioxide_in_air
  • var_id: vmrno2
  • names: NO2 Volume Mixing Ratio, mole_fraction_of_nitrogen_dioxide_in_air
  • units: 1
  • standard_name: mole_fraction_of_nitrogen_dioxide_in_air
  • var_id: vmrno2
  • long_name: NO2 Volume Mixing Ratio in Lowest Model Layer
  • names: mole_fraction_of_nitrogen_dioxide_in_air, NO2 Volume Mixing Ratio in Lowest Model Layer
  • units: 1
  • long_name: O3 Volume Mixing Ratio
  • standard_name: mole_fraction_of_ozone_in_air
  • var_id: vmro3
  • names: O3 Volume Mixing Ratio, mole_fraction_of_ozone_in_air
  • units: 1
  • standard_name: mole_fraction_of_ozone_in_air
  • var_id: vmro3
  • long_name: O3 Volume Mixing Ratio in Lowest Model Layer
  • names: mole_fraction_of_ozone_in_air, O3 Volume Mixing Ratio in Lowest Model Layer
  • units: 1
  • long_name: OH Volume Mixing Ratio
  • standard_name: mole_fraction_of_hydroxyl_radical_in_air
  • var_id: vmroh
  • names: OH Volume Mixing Ratio, mole_fraction_of_hydroxyl_radical_in_air
  • units: 1
  • long_name: PAN Volume Mixing Ratio
  • standard_name: mole_fraction_of_peroxyacetyl_nitrate_in_air
  • var_id: vmrpan
  • names: mole_fraction_of_peroxyacetyl_nitrate_in_air, PAN Volume Mixing Ratio
  • units: s-1
  • long_name: Photolysis Rate of O3 to O1D
  • var_id: photo1d
  • names: Photolysis Rate of O3 to O1D
  • units: kg m-2
  • var_id: precip
  • long_name: Precipitation Amount
  • standard_name: precipitation_amount
  • names: Precipitation Amount, precipitation_amount
  • units: mole m-3 s-1
  • long_name: Rate of CH4 Oxidation
  • var_id: lossch4
  • names: Rate of CH4 Oxidation
  • units: mole m-3 s-1
  • long_name: Rate of CO Oxidation
  • var_id: lossco
  • names: Rate of CO Oxidation
  • units: 1
  • standard_name: specific_humidity
  • var_id: hus
  • long_name: Specific Humidity
  • names: specific_humidity, Specific Humidity
  • units: 1
  • long_name: Stratospheric O3 Volume Mixing Ratio
  • var_id: vmrstrato3
  • names: Stratospheric O3 Volume Mixing Ratio
  • units: Pa
  • standard_name: surface_air_pressure
  • var_id: ps
  • long_name: Surface Air Pressure
  • names: surface_air_pressure, Surface Air Pressure
  • units: m
  • long_name: Surface Altitude
  • standard_name: surface_altitude
  • var_id: orog
  • names: Surface Altitude, surface_altitude
  • units: W m-2
  • standard_name: surface_downwelling_longwave_flux_in_air
  • var_id: rlds
  • long_name: Surface Downwelling Longwave Radiation
  • names: surface_downwelling_longwave_flux_in_air, Surface Downwelling Longwave Radiation
  • units: W m-2
  • standard_name: surface_downwelling_shortwave_flux_in_air
  • var_id: rsds
  • long_name: Surface Downwelling Shortwave Radiation
  • names: surface_downwelling_shortwave_flux_in_air, Surface Downwelling Shortwave Radiation
  • units: W m-2
  • long_name: Surface Upwelling Longwave Radiation
  • standard_name: surface_upwelling_longwave_flux_in_air
  • var_id: rlus
  • names: Surface Upwelling Longwave Radiation, surface_upwelling_longwave_flux_in_air
  • units: W m-2
  • long_name: Surface Upwelling Shortwave Radiation
  • standard_name: surface_upwelling_shortwave_flux_in_air
  • var_id: rsus
  • names: surface_upwelling_shortwave_flux_in_air, Surface Upwelling Shortwave Radiation
  • var_id: rlutcs
  • units: W m-2
  • standard_name: toa_outgoing_longwave_flux_assuming_clear_sky
  • long_name: TOA Outgoing Clear-Sky Longwave Radiation
  • names: toa_outgoing_longwave_flux_assuming_clear_sky, TOA Outgoing Clear-Sky Longwave Radiation
  • var_id: rsutcs
  • units: W m-2
  • standard_name: toa_outgoing_shortwave_flux_assuming_clear_sky
  • long_name: TOA Outgoing Clear-Sky Shortwave Radiation
  • names: toa_outgoing_shortwave_flux_assuming_clear_sky, TOA Outgoing Clear-Sky Shortwave Radiation
  • var_id: rlut
  • units: W m-2
  • standard_name: toa_outgoing_longwave_flux
  • long_name: TOA Outgoing Longwave Radiation
  • names: toa_outgoing_longwave_flux, TOA Outgoing Longwave Radiation
  • var_id: rsut
  • units: W m-2
  • standard_name: toa_outgoing_shortwave_flux
  • long_name: TOA Outgoing Shortwave Radiation
  • names: toa_outgoing_shortwave_flux, TOA Outgoing Shortwave Radiation
  • units: kg m-2 s-1
  • long_name: Total Emission Rate of Anthropogenic CO
  • var_id: emiaco
  • names: Total Emission Rate of Anthropogenic CO
  • units: kg m-2 s-1
  • long_name: Total Emission Rate of CO
  • standard_name: tendency_of_atmosphere_mass_content_of_carbon_monoxide_due_to_emission
  • var_id: emico
  • names: Total Emission Rate of CO, tendency_of_atmosphere_mass_content_of_carbon_monoxide_due_to_emission
  • units: kg m-2 s-1
  • long_name: Total Emission Rate of NMVOC
  • var_id: emivoc
  • names: Total Emission Rate of NMVOC
  • units: kg m-2 s-1
  • long_name: Total Emission Rate of NOx
  • standard_name: tendency_of_atmosphere_mass_content_of_nox_expressed_as_nitrogen_due_to_emission
  • var_id: eminox
  • names: tendency_of_atmosphere_mass_content_of_nox_expressed_as_nitrogen_due_to_emission, Total Emission Rate of NOx
  • units: kg m-2
  • long_name: Total Ozone Column
  • standard_name: atmosphere_mass_content_of_ozone
  • var_id: o3col
  • names: Total Ozone Column, atmosphere_mass_content_of_ozone
  • units: 1
  • long_name: VMR CO-like passive tracer with prescribed 50-day lifetime
  • var_id: vmrcodirect
  • names: VMR CO-like passive tracer with prescribed 50-day lifetime
  • units: kg m-2
  • long_name: Vertically Integrated Mass Content of Air in Layer
  • standard_name: atmosphere_mass_of_air_per_unit_area
  • var_id: airmass
  • names: atmosphere_mass_of_air_per_unit_area, Vertically Integrated Mass Content of Air in Layer
  • units: kg m-2 s-1
  • long_name: Wet Deposition Rate of HNO3
  • standard_name: tendency_of_atmosphere_mass_content_of_nitric_acid_due_to_wet_deposition
  • var_id: wethno3
  • names: Wet Deposition Rate of HNO3, tendency_of_atmosphere_mass_content_of_nitric_acid_due_to_wet_deposition
  • units: kg m-2 s-1
  • long_name: Wet Deposition of NOy incl aerosol nitrate
  • var_id: wetnoy
  • names: Wet Deposition of NOy incl aerosol nitrate
  • standard_name: atmosphere_hybrid_sigma_pressure_coordinate
  • var_id: lev_bnds
  • names: atmosphere_hybrid_sigma_pressure_coordinate
  • units: 1
  • standard_name: atmosphere_hybrid_sigma_pressure_coordinate
  • long_name: hybrid sigma pressure coordinate
  • var_id: lev
  • names: atmosphere_hybrid_sigma_pressure_coordinate, hybrid sigma pressure coordinate
  • var_id: lat_bnds
  • var_id: lev_bnds
  • var_id: lon_bnds
  • var_id: lev
  • long_name: lowest atmospheric model level
  • names: lowest atmospheric model level
  • var_id: time_bnds
  • units: 1
  • long_name: vertical coordinate formula term: a(k)
  • var_id: a
  • names: vertical coordinate formula term: a(k)
  • units: 1
  • long_name: vertical coordinate formula term: a(k+1/2)
  • var_id: a_bnds
  • names: vertical coordinate formula term: a(k+1/2)
  • units: 1
  • long_name: vertical coordinate formula term: b(k)
  • var_id: b
  • names: vertical coordinate formula term: b(k)
  • units: 1
  • long_name: vertical coordinate formula term: b(k+1/2)
  • var_id: b_bnds
  • names: vertical coordinate formula term: b(k+1/2)
  • units: Pa
  • var_id: p0
  • long_name: vertical coordinate formula term: reference pressure
  • names: vertical coordinate formula term: reference pressure

Co-ordinate Variables

  • units: degrees_north
  • standard_name: latitude
  • long_name: latitude
  • var_id: lat
  • names: latitude
  • units: degrees_east
  • standard_name: longitude
  • long_name: longitude
  • var_id: lon
  • names: longitude
  • long_name: time
  • standard_name: time
  • var_id: time
  • names: time
Coverage
Temporal Range
Start time:
1850-01-01T00:00:00
End time:
2100-12-31T00:00:00
Geographic Extent

 
89.0000°
 
-180.0000°
 
180.0000°
 
-89.0000°