This website uses cookies. By continuing to use this website you are agreeing to our use of cookies. 

Dataset

 

Technical Summary of the Working Group I Contribution to the IPCC Sixth Assessment Report - data for Figure TS.1 v20221110

Update Frequency: Not Planned
Latest Data Update: 2023-06-05
Status: Ongoing
Online Status: ONLINE
Publication State: Citable
Publication Date: 2023-06-08
DOI Publication Date: 2023-07-27
Download Stats: last 12 months
Dataset Size: 10 Files | 2MB

Abstract

Data for Figure TS.1 from the Technical Summary of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).

Figure TS.1 shows changes in atmospheric CO2 and global surface temperature (relative to 1850-1900) from the deep past to the next 300 years.

---------------------------------------------------
How to cite this dataset
---------------------------------------------------
When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates:
Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li, T. Mauritsen, T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33−144, doi:10.1017/9781009157896.002.

---------------------------------------------------
Figure subpanels
---------------------------------------------------
The figure has three panels with multiple subplots. Metadata provided for all the plots in the figure, and data is provided for the maps of surface temperature (projections and 2020) and for the atmospheric CO2 concentration corresponding to the paleo 60 - 1 million years time series, and paleo and direct measurements from 800 thousand years to 1980.

---------------------------------------------------
List of data provided
---------------------------------------------------
This dataset contains:

- Atmospherics CO2 concentration (ppm) corresponding to the paleo 60–1 million years
- Atmospherics CO2 concentration (ppm), paleo and direct measurements from 800 thousand years to 1980
- Global surface temperature for 2020 (estimate of the total observed warming since 1850–1900).
- Global surface temperature at 2100 and 2300 from CMIP6 models (relative to 1850-1900) for SSP1-2.6 and SSP5-8.5 scenarios.

---------------------------------------------------
Data provided in relation to figure
---------------------------------------------------
- Data file: CO2_60_Myr.csv (top row, atmospheric CO2 concentration corresponding to the paleo 60–10 million years time series)
- Data file: fig2_4a_main_figure_data.csv (top row, paleo and direct measurements from 800 thousand years to 1980)
- Data file: TS_BK_2020.nc (Global surface temperature map for 2020, estimate of the total observed warming since 1850–1900).
- Data file: ensmean_tas_ssp126_2100-historical_1850_regrid.nc (Global surface temperature map at 2100 relative to 1850-1900 for SSP1-2.6 scenario)
- Data file: ensmean_tas_ssp126_2300-historical_1850_regrid.nc (Global surface temperature map at 2300 relative to 1850-1900 for SSP1-2.6 scenario)
- Data file: ensmean_tas_ssp585_2100-historical_1850_regrid.nc (Global surface temperature map at 2100 relative to 1850-1900 for SSP5-8.5 scenario)
- Data file: ensmean_tas_ssp585_2300-historical_1850_regrid.nc (Global surface temperature map at 2300 relative to 1850-1900 for SSP5-8.5 scenario)

CSV files were converted for archival from Excel workbooks.

SSP stands for Shared Socioeconomic Pathway.
ppm stands for parts per million.
SSP1-2.6 is based on Shared Socioeconomic Pathway SSP1 with low climate change mitigation and adaptation challenges and RCP2.6, a future pathway with a radiative forcing of 2.6 W/m2 in the year 2100.
SSP2-4.5 is based on Shared Socioeconomic Pathway SSP2 with medium challenges to climate change mitigation and adaptation and RCP4.5, a future pathway with a radiative forcing of 4.5 W/m2 in the year 2100.
SSP5-8.5 is based on Shares Socioeconomic Pathway SSP5 where climate change mitigation challenges dominate and RCP8.5, a future pathway with a radiative forcing of 8.5 W/m2 in the year 2100.

---------------------------------------------------
Temporal Range of Paleoclimate Data
---------------------------------------------------
This dataset covers a paleoclimate timespan from 60 Myr to 2300.
Myr refers to millions of years before present.

---------------------------------------------------
Notes on reproducing the figure from the provided data
---------------------------------------------------
Notes on reproducing this figure are linked in a computation record found in the Process section of this catalogue record.

---------------------------------------------------
Sources of additional information
---------------------------------------------------
The following weblinks are provided in the Related Documents section of this catalogue record:
- Link to the figure on the IPCC AR6 website
- Link to the report component containing the figure (Technical Summary)
- Links to the report components of the underlying chapter figures from which part of this figure was generated (Chapter 2 and Chapter 7)
- Link to the Supplementary Material for Chapter 2, which contains details on the input data used in the figure
- Link to the Supplementary Material for Chapter 7, which contains details on the input data used in the figure
- Link to the data for 2300 emissions scenarios described in section 4.7, archived on Zenodo.
- Link to the data for 2300 projections from Figure 4.40a (section 4.7.1), archived on Zenodo.

Citable as:  Kaufman, D.; Silva, L.; Lunt, D.; Jones, C.; Foster, G.; Hawkins, E. (2023): Technical Summary of the Working Group I Contribution to the IPCC Sixth Assessment Report - data for Figure TS.1 v20221110. NERC EDS Centre for Environmental Data Analysis, 27 July 2023. doi:10.5285/3d16a09c21c9440288608276b615c11f. https://dx.doi.org/10.5285/3d16a09c21c9440288608276b615c11f
Abbreviation: Not defined
Keywords: Cenozoic global surface temperature, Cenozoic atmospheric CO2 concentration, CO2 and surface temperature projections, IPCC-DDC, IPCC, AR6, WG1, WGI, Sixth Assessment Report, Working Group 1, Physical Science Basis, global surface temperature, CO2

Details

Previous Info:
No news update for this record
Previously used record identifiers:
No related previous identifiers.
Access rules:
Public data: access to these data is available to both registered and non-registered users.
Use of these data is covered by the following licence(s):
http://creativecommons.org/licenses/by/4.0/
When using these data you must cite them correctly using the citation given on the CEDA Data Catalogue record.
Data lineage:

Data produced by Intergovernmental Panel on Climate Change (IPCC) authors and supplied for archiving at the Centre for Environmental Data Analysis (CEDA) by the Technical Support Unit (TSU) for IPCC Working Group I (WGI).
Data curated on behalf of the IPCC Data Distribution Centre (IPCC-DDC).
Data converted to CSV format for archival by CEDA staff.

Data Quality:
Data as provided by the IPCC
File Format:
Data are in netCDF format and CSV

Related Documents

 ORIGIN OF FIGURE (IPCC REPORT TS): Arias, P.A. et al.
 ORIGIN OF RELATED FIGURE (IPCC REPORT CHAPTER 7): Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
 Data for 2300 emissions scenarios described in section 4.7 (archived on Zenodo)
 Data for 2300 projections from Figure 4.40a (section 4.7.1) (archived on Zenodo)
 ORIGIN OF RELATED FIGURES (IPCC REPORT CHAPTER 2): Gulev, S. K., P. W. Thorne, J. Ahn, F. J. Dent ener, C. M. Domingues, S. Gerland, D. Gong, D. S. Kaufman, H. C. Nnamchi, J. Quaas, J. A. Rivera, S. Sathyendranat h, S. L. Smith, B. Trewin, K. von Shuckmann, R. S. Vose, 2021, Changing State of the Climate System. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
 SUPPLEMENTARY MATERIAL FOR REPORT CHAPTER 7: Smith, C., Z.R.J. Nicholls, K. Armour, W. Collins, P. Forster, M. Meinshausen, M.D. Palmer, and M. Watanabe, 2021: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
 LINK TO FIGURE
 SUPPLEMENTARY MATERIAL FOR REPORT CHAPTER 2: Gulev, S.K., P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, D. Gong, D.S. Kaufman, H.C. Nnamchi, J. Quaas, J.A. Rivera, S. Sathyendranath, S.L. Smith, B. Trewin, K. von Schuckmann, and R.S. Vose, 2021: Changing State of the Climate System Supplementary Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

Process overview

This dataset was generated by the computation detailed below.
Title

Technical Summary of the Working Group I Contribution to the IPCC Sixth Assessment Report - notes on reproducing Figure TS.1 v20221110

Abstract

Notes on reproducing Figure TS.1 from the provided data.

Top row of figure (CO2 concentrations) is related to:

-- Paleo data are from Figure 2.3 and 2.4 (section 2.2.3):
. Paleo 60–1 million years data are from Figure 2.3 (section 2.2.3), compiled data provided in this dataset,
. Paleo and direct measurements 800 thousand years to 1980 CE data are from Figure 2.4 (section 2.2.3), input data references in the input data table 2.SM.1 of the Supplementary Material for Chapter 2.

-- 2300 emissions scenarios are described in section 4.7.1:
. Data link provided in Related Documents section of this catalogue record (https://zenodo.org/record/6386979#.YnAJPy-cb-E).

Bottom row of figure (global mean surface temperature) is related to:

-- Paleo data are from Cross-Chapter Box 2.1, Figure 1:
. 60 –1 million years from Hansen et al., (2013)
. 800 to 0 thousand years from Snyder, (2016).
. Data are archived at CEDA and link provided in Related Records section of this catalogue record (https://catalogue.ceda.ac.uk/uuid/0f05c2fb8f814d60ac2d657a70e9a7f5).

-- Direct measurements are from Figure 2.11 (section 2.3.1):
. Data are archived at CEDA and link provided in Related Records section of this catalogue record (https://catalogue.ceda.ac.uk/uuid/f3515388768344bfb2be0521f82388be).

-- 2300 projections are from Figure 4.40a (section 4.7.1):
. Data link provided in Related Documents section of this catalogue record (https://zenodo.org/record/6386979#.YnAJPy-cb-E).

Maps of surface air temperature are related to:

-- Early Eocene and mid-Pliocene are from Figure 7.13, data are archived at CEDA and link provided in Related Records section of this catalogue record.
-- 2020 in this dataset
-- 2100 and 2300 projections in this dataset.

Early Eocene:
The background map (model) is the same as Figure 7.13a, and the data points (proxies) are the same as Figure 7.13a (circles) and Figure 7.13j (squares). The data for the model map comes from Lunt et al (2021). The model output is in the supp info of that paper, https://cp.copernicus.org/articles/17/203/2021/cp-17-203-2021-supplement.zip; . We only include those simulations which were carried out with CO2 in the IPCC assessed range, that is:

N=5: CESM1.2_CAM5-deepmip_stand_6xCO2 , COSMOS-landveg_r2413-deepmip_sens_4xCO2 , GFDL_CM2.1-deepmip_stand_6xCO2 , GFDL_CM2.1-deepmip_sens_4xCO2 , INM-CM4-8-deepmip_stand_6xCO2

Note that an anomaly is shown, relative to the zonal mean of the ensemble mean preindustrial control (also available from the same source).

The proxies are from Hollis et al (2019), but only those sites that were deemed to not be affected by diagenesis. Data and metadata for these sites are in Inglis et al (2020).

Mid-Pliocene:
The background map (model) is the same as Figure 7.13b, and the data points (proxies) are the same as Figure 7.13b (circles) and Figure 7.13k (squares). The data for the model map comes from Haywood et al. (2020). The model output is in the PlioMIP database (for details see Chapter 2 Supplementary Material Table 2.SM.1, Cross-Chapter Box 2.4). In addition we also included one model published after Haywood et al., described in Williams et al. (2021), which is available on the ESGF. The simulations are:

N=17: CCSM4 , CCSM4-UoT . CCSM4-Utrecht , CESM1.2 , CESM2.0 , COSMOS , EC-Earth3.3 , GISS-E2-1-G , HadCM3 , HadGEM3 , IPSL-CM6A-LR , IPSLCM5A , IPSLCM5A2 , MIROC4m , MRI-CGCM2.3 , NorESM-L , NorESM1-F

Note that an anomaly is shown, relative to the ensemble mean preindustrial control (also available from the same sources).

The proxies are from McClymont et al (2020; squares) and Salzmann et al (2013; circles; only those sites that fall within the time window of the Km5c PlioMIP time slice).

SSPs:

The SSP map plots were produced in the following way:

- For 2300, the means plotted are Years 2281-2300 minus 1850-1900.
- For 2100, the means plotted are Years 2081-2100 minus 1850-1900.

The SSPs are 5-8.5 and 1-2.6.

The multi-model ensemble mean is based on models with 2300 simulations of both these SSPs at the time of making the plot:

CanESM5 , IPSL-CM6A-LR , MRI-ESM2-0 , CESM2-WACCM , UKESM1-0-LL.

All available from the ESGF – SSP simulations and historical simulations.

2020:
The methodology for this maps is in Hawkins et al (2020), and is based on regression of local temperatures on the global mean.

References :

Hansen, J., M. Sato, G. Russell, and P. Kharecha, 2013: Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294, doi:10.1098/rsta.2012.0294.

Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., and Sutton, R, 2020: Observed emergence of the climate change signal: From the familiar to the unknown. Geophysical Research Letters, 47, e2019GL086259. doi:10.1029/2019GL086259.

Haywood, A. M., Tindall, J. C., Dowsett, H. J., Dolan, A. M., Foley, K. M., Hunter, S. J., Hill, D. J., Chan, W.-L., Abe-Ouchi, A., Stepanek, C., Lohmann, G., Chandan, D., Peltier, W. R., Tan, N., Contoux, C., Ramstein, G., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Zhang, Q., Li, Q., Kamae, Y., Chandler, M. A., Sohl, L. E., Otto-Bliesner, B. L., Feng, R., Brady, E. C., von der Heydt, A. S., Baatsen, M. L. J., and Lunt, D. J., 2020: The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate of the Past, 16, 2095-2123. doi:10.5194/cp-16-2095-2020.

Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J., 2019: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geoscience Model Development, 12, 3149-3206, doi:10.5194/gmd-12-3149-2019.

Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., and Pancost, R. D., 2020: Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 16, 1953-1968. doi:10.5194/cp-16-1953-2020.

Lunt, D. J., Bragg, F., Chan, W.-L., Hutchinson, D. K., Ladant, J.-B., Morozova, P., Niezgodzki, I., Steinig, S., Zhang, Z., Zhu, J., Abe-Ouchi, A., Anagnostou, E., de Boer, A. M., Coxall, H. K., Donnadieu, Y., Foster, G., Inglis, G. N., Knorr, G., Langebroek, P. M., Lear, C. H., Lohmann, G., Poulsen, C. J., Sepulchre, P., Tierney, J. E., Valdes, P. J., Volodin, E. M., Dunkley Jones, T., Hollis, C. J., Huber, M., and Otto-Bliesner, B. L., 2021: DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 17, 203-227, doi: 10.5194/cp-17-203-2021.

McClymont, E. L., Ford, H. L., Ho, S. L., Tindall, J. C., Haywood, A. M., Alonso-Garcia, M., Bailey, I., Berke, M. A., Littler, K., Patterson, M. O., Petrick, B., Peterse, F., Ravelo, A. C., Risebrobakken, B., De Schepper, S., Swann, G. E. A., Thirumalai, K., Tierney, J. E., van der Weijst, C., White, S., Abe-Ouchi, A., Baatsen, M. L. J., Brady, E. C., Chan, W.-L., Chandan, D., Feng, R., Guo, C., von der Heydt, A. S., Hunter, S., Li, X., Lohmann, G., Nisancioglu, K. H., Otto-Bliesner, B. L., Peltier, W. R., Stepanek, C., and Zhang, Z., 2020: Lessons from a high-CO2 world: an ocean view from  ∼ 3 million years ago. Climate of the Past, 16, 1599–1615. doi:10.5194/cp-16-1599-2020.

Salzmann, U., Dolan, A., Haywood, A., Chan, W.-L., Voss, J., Hill, D., Abe-Ouchi, A., Otto-Bliesner, B., Brag, F., Chandler, M., Contoux, C., Dowsett, H., Jost, A., Kamae, Y., Lohmann, G., Lunt, D., Pickering, s., Pound, M., Ramstein, G., Rosenbloom, N., Soh, L., Stepanek, C., Ueda, H., and Zhang, Z., 2013: Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature Climate Change, 3, 969–974. doi:10.1038/nclimate2008.

Snyder, C.W., 2016: Evolution of global temperature over the past two million years. Nature, 538, 226, doi:10.1038/nature19798.

Williams, C. J. R., Sellar, A. A., Ren, X., Haywood, A. M., Hopcroft, P., Hunter, S. J., Roberts, W. H. G., Smith, R. S., Stone, E. J., Tindall, J. C.,and Lunt, D. J., 2021: Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from modelmodel and modeldata comparison. Climate of the Past, 17, 21392163. doi:10.5194/cp-17-2139-2021.

Input Description

None

Output Description

None

Software Reference

None

  • units: K
  • standard_name: air_temperature
  • var_id: tas
  • long_name: Near-Surface Air Temperature
  • units: m
  • standard_name: height
  • var_id: height
  • long_name: height
  • var_id: time_bnds

Co-ordinate Variables

  • units: degrees_north
  • standard_name: latitude
  • long_name: latitude
  • var_id: lat
  • units: degrees_east
  • standard_name: longitude
  • long_name: longitude
  • var_id: lon
  • long_name: time
  • standard_name: time
  • var_id: time
  • units: days
Coverage
Temporal Range
Start time:
0001-01-01T00:00:00
End time:
2300-12-31T12:00:00
Geographic Extent

 
90.0000°
 
-180.0000°
 
180.0000°
 
-90.0000°