This website uses cookies. By continuing to use this website you are agreeing to our use of cookies. 

Dataset

 

Sentinel 3A Synthetic Aperture Radar Altimeter (SRAL) Level 1B-S data

Update Frequency: Continual
Latest Data Update: 2019-09-03
Status: Ongoing
Online Status: ONLINE
Publication State: Published
Publication Date: 2021-07-01
Download Stats: last 12 months
Dataset Size: 9.69K Files | 5TB

Abstract

This dataset contains level 1b (L1B-S) altimetry data from the Synthetic Aperture Radar Altimeter (SRAL) aboard the European Space Agency (ESA) Sentinel 3A Satellite. Sentinel 3A was launched on the 16th of February 2016. These data are fully SAR-processed and calibrated High-Resolution (HR) complex echoes arranged in stacks after slant range correction and prior to echo multi-look (multi-look processing reduces noise by averaging of adjacent pixels, and thereby reduces the standard deviation of the noise level).

The L1B-S HR product contains information from Doppler beams data. Hence, it has only been defined for the Synthetic Aperture Radar (SAR) processing chain. The Doppler beams associated with a given surface location (also called stack data) are formed through the selection of all the beams that illuminate a given surface location, and that contribute to each L1B HR waveform. Beams are the result of applying Doppler processing to the waveform bursts, which allows division of the conventional altimeter footprint into a certain number of stripes, thus creating a Delay Doppler Map (DDM). With this, contributions coming from different stripes can be identified and collected separately. When all the contributions from different bursts are collected, a stack is formed. The stack waveforms are provided in In-phase (I) and Quadrature-phase (I/Q) samples (complex waveforms) in the frequency domain. Apart from the Doppler processing, the beams of a stack have also been fully calibrated and range aligned. The L1B-S also includes characterisation parameters about the stack itself. The time tag is given at each surface location (defined throughout the L1 processing chain).

Data are provided by ESA and are made available via CEDA to any registered user.

Citable as:  Copernicus; European Space Agency (2021): Sentinel 3A Synthetic Aperture Radar Altimeter (SRAL) Level 1B-S data. NERC EDS Centre for Environmental Data Analysis, date of citation. https://catalogue.ceda.ac.uk/uuid/41526384c3dd463eb0fc0117b87d08f6
Abbreviation: Not defined
Keywords: Sentinel, Synthetic Aperture Radar Altimeter, SRAL, SAR, Sentinel3

Details

Previous Info:
No news update for this record
Previously used record identifiers:
No related previous identifiers.
Access rules:
Public data: access to these data is available to both registered and non-registered users.
Use of these data is covered by the following licence: https://sentinel.esa.int/documents/247904/690755/Sentinel_Data_Legal_Notice. When using these data you must cite them correctly using the citation given on the CEDA Data Catalogue record.
Data lineage:

Data collected and prepared by European Space Agency (ESA). Downloaded from the Sentinel hubs for use by the CEDA community.

Data Quality:
Data provided by ESA. CEDA download the data from the Collaborative or open access data hubs to make available on the CEDA archive.
File Format:
Data are provided by ESA in zipped SAFE format.

Process overview

This dataset was generated by a combination of instruments deployed on platforms and computations as detailed below.

Instrument/Platform pairings

Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) Deployed on: Sentinel 3A

Computation Element: 1

Title Computation Component: Level 1B processing algorithm applied to Sentinel 3 SRAL raw data.
Abstract This computation involves the Level 1 processing algorithm applied to raw Synthetic Aperture Radar Altimeter (SRAL) data. The main algorithms of the Level-1 SAR_Ku chain are: Determine surface type - This algorithm computes the surface type ("open ocean or semi-enclosed seas", "enclosed seas or lakes", "continental ice" or "land") determining the position of a "land-sea mask" Auxiliary Data File nearest to the geolocated measurement. The latitude and longitude resolution of this land-sea mask is 2 minutes. Compute tracker ranges corrected for USO frequency drift - This algorithm computes the USO correction from an Auxiliary Data File called "USO file" and this correction is applied to the tracker range. The "USO file" provides the real USO frequency drift measured on-board wrt the USO frequency nominal value. This algorithm also computes the tracker range rate converted into distance versus time. Compute tracker ranges corrected for internal path correction - This algorithm computes the internal path correction from an Auxiliary Data File called "CAL1 LTM file" and this correction is applied to the tracker range. The "CAL1 LTM file" provides the internal path delay measured on-board thanks to the CAL1 calibration mode, which measures the difference of travel between the transmission and the reference lines within the altimeter. This algorithm also computes and applies the instrumental delay correction measured on-ground, due to the distance between the duplexer and the antenna reference point. Correct the AGC for instrumental errors - This algorithm computes the Automatic Gain Control (AGC) instrumental correction and applies this correction to the AGC. The AGC instrumental correction is computed taking into account the real gain value applied on-board and stored as a matrix table on an Auxiliary Data File called "characterisation file". Correct and apply power & phase corrections - This algorithm computes and applies to each burst the phase and power variations within all the echoes of every burst. These phase and power corrections are measured on-board through a sequence of calibration echoes in CAL1 calibration mode. Correct the waveforms - On-board, there is a calibration mode called CAL2 that is able to compute the Gain Profile Range Window (GPRW) that provides the information of the attenuation of the samples of the Level . The GPRW accounts for several instrumental effects (e.g. intermediate frequency filters gain response) that have an impact on the Level 0 waveforms power. This algorithm corrects these Level-0 waveforms by the GPRW instrumental effects. Compute surface locations - In the SAR_Ku processing chain, the output measurements are referenced to surface locations along the satellite track. These surface locations correspond with the intersection of the Doppler beams with an estimation of the surface elevations. These surface locations are used along all L1 SAR_Ku processing. Determine Doppler beams direction - This algorithm determines the angular spacing between the instantaneous zero Doppler plane and the lines defined by the burst centre and the reference surface locations "observed" within the burst sequence. Doppler beams generation - This algorithm generates the Doppler beams in the frequency domain. Each burst of pulse-limited time-domain echoes are transformed into the frequency domain using an FFT (Fast Fourier Transform) in the along-track direction. Compute and apply Doppler correction - This algorithm computes and applied the Doppler correction to the tracker ranges. This correction is needed to remove the echoes frequency shifts due to sensor-target velocity. The Doppler correction is computed and applied in the frequency domain to each Doppler beam. This correction is a function of the emitted frequency, the pulse emitted duration, the satellite velocity of the beams, the emitted bandwidth, and the sign of the slope of the transmitted chirp. Compute and apply slant range corrections - This algorithm computes the slant corrections (both fine and coarse) that correct the range migration due to the motion of the sensor along the orbit. Range compression - This algorithm performs a range compression of the waveform that is the conversion of each Doppler processed burst of pulse-width time-domain echoes to the frequency domain. Tracker alignment correction - This algorithm corrects the azimuth processed echo stack for on-board tracker variation. It means that for each surface location, the waveforms are aligned before multi-looking. Doppler beams stack & multi-looking - This algorithm computes the stacked Doppler beams (I2+Q2 power waveforms) through the non-coherent summation of all the beams corresponding to each surface location. Compute sigma0 scaling factor - This algorithm computes the sigma0 scaling factor that is used at Level2 to determine the backscatter coefficients from the retracked amplitudes. The sigma0 scaling factor accounts for all power attenuations and gains which have an impact on the signal received on-board.
Input Description None
Output Description None
Software Reference None
Output Description

None

No variables found.

Coverage
Temporal Range
Start time:
2018-02-01T00:00:00
End time:
Ongoing
Geographic Extent

 
90.0000°
 
-180.0000°
 
180.0000°
 
-90.0000°