This website uses cookies. By continuing to use this website you are agreeing to our use of cookies. 

Dataset

 

Chapter 3 of the Working Group I Contribution to the IPCC Sixth Assessment Report - data for Figure 3.12 (v20211001)

Update Frequency: Not Planned
Latest Data Update: 2021-10-15
Status: Completed
Online Status: ONLINE
Publication State: Citable
Publication Date: 2021-10-29
DOI Publication Date: 2023-02-08
Download Stats: last 12 months
Dataset Size: 8 Files | 46KB

Abstract

Data for Figure 3.12 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).

Figure 3.12 shows column water vapor path trends (%/decade) for the period 1998-2019 averaged over the near-global oceans (50°S-50°N) 

---------------------------------------------------
How to cite this dataset
---------------------------------------------------
When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates:
Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005.

---------------------------------------------------
List of data provided
---------------------------------------------------
The dataset contains water vapor path trends for the period 1998-2019 for:

- observed average (RSS and ERA5)
- simulated bins (CMIP5 and CMIP6)
- simulated fit (CMIP5 and CMIP6)

RSS (Remote Sensing Systems) refers to geophysical data collected by satellite microwave sensors.
ERA5 is the fifth generation ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric reanalysis of the global climate.
CMIP5 is the fifth phase of the Coupled Model Intercomparison Project.
CMIP6 is the sixth phase of the Coupled Model Intercomparison Project.

---------------------------------------------------
Data provided in relation to figure
---------------------------------------------------
- atmosphere_mass_content_of_water_vapor_trend_era5.nc (var = 'prw_trend', purple line)
- atmosphere_mass_content_of_water_vapor_trend_rss.nc (var = 'prw_trend', orange line)
- atmosphere_mass_content_of_water_vapor_trends_kde_fit_cmip5.nc (var = 'trend_bins', blue line)
- atmosphere_mass_content_of_water_vapor_trends_kde_fit_cmip6.nc (var = 'trend_bins', red line)
- atmosphere_mass_content_of_water_vapor_trends_pdf_cmip5.nc (var = 'trend_bins', blue bars)
- atmosphere_mass_content_of_water_vapor_trends_pdf_cmip6.nc (var = 'trend_bins', red bars)

---------------------------------------------------
Sources of additional information
---------------------------------------------------
The following weblinks are provided in the Related Documents section of this catalogue record:
- Link to the report component containing the figure (Chapter 3)
- Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1
- Link to the code for the figure, archived on Zenodo.

Citable as:  Weigel, K.; Santer, B.D.; Kazeroni, R.; Bock, L. (2023): Chapter 3 of the Working Group I Contribution to the IPCC Sixth Assessment Report - data for Figure 3.12 (v20211001). NERC EDS Centre for Environmental Data Analysis, 08 February 2023. doi:10.5285/7273023a04d24da58ec5d83343cd861d. https://dx.doi.org/10.5285/7273023a04d24da58ec5d83343cd861d
Abbreviation: Not defined
Keywords: IPCC-DDC, IPCC, AR6, WG1, WGI, Sixth Assessment Report, Working Group I, Physical Science Basis, Chapter 3, Human influence, large-scale indicators, Natural variability, anthropogenically-forced change, observed changes, Figure 3.12, water vapor path trend

Details

Previous Info:
No news update for this record
Previously used record identifiers:
No related previous identifiers.
Access rules:
Public data: access to these data is available to both registered and non-registered users.
Use of these data is covered by the following licence(s):
http://creativecommons.org/licenses/by/4.0/
When using these data you must cite them correctly using the citation given on the CEDA Data Catalogue record.
Data lineage:

Data produced by Intergovernmental Panel on Climate Change (IPCC) authors and supplied for archiving at the Centre for Environmental Data Analysis (CEDA) by the Technical Support Unit (TSU) for IPCC Working Group I (WGI).
Data curated on behalf of the IPCC Data Distribution Centre (IPCC-DDC).

Data Quality:
Data as provided by the IPCC
File Format:
Data are netCDF formatted.

Process overview

This dataset was generated by the computation detailed below.
Title

Caption for Figure 3.12 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6)

Abstract

Column water vapour path trends (%/decade) for the period 1998–2019 averaged over the near-global oceans (50°S–50°N). The figure shows satellite data (RSS) and ERA5.1 reanalysis, as well as CMIP5 (sky blue) and CMIP6 (brown) historical simulations. All available ensemble members were used (see Section 3.2). Fits to the model trend probability distributions were performed with kernel density estimation. Figure is updated from Santer et al. (2007). Further details on data sources and processing are available in the chapter data table (Table 3.SM.1).

Input Description

None

Output Description

None

Software Reference

None

  • units: 1
  • long_name: Gaussian kernel-density estimate for the probability density from Water Vapor Path Trends in percent per decade for CMIP5
  • var_id: atmosphere_mass_content_of_water_vapor_trends_kde_fit_cmip5
  • names: Gaussian kernel-density estimate for the probability density from Water Vapor Path Trends in percent per decade for CMIP5
  • units: 1
  • long_name: Gaussian kernel-density estimate for the probability density from Water Vapor Path Trends in percent per decade for CMIP6
  • var_id: atmosphere_mass_content_of_water_vapor_trends_kde_fit_cmip6
  • names: Gaussian kernel-density estimate for the probability density from Water Vapor Path Trends in percent per decade for CMIP6
  • units: 1
  • var_id: atmosphere_mass_content_of_water_vapor_trends_kde_fit_cmip5
  • long_name: Probability density from Water Vapor Path Trends in percent per decade for CMIP5
  • names: Probability density from Water Vapor Path Trends in percent per decade for CMIP5
  • units: 1
  • var_id: atmosphere_mass_content_of_water_vapor_trends_kde_fit_cmip6
  • long_name: Probability density from Water Vapor Path Trends in percent per decade for CMIP6
  • names: Probability density from Water Vapor Path Trends in percent per decade for CMIP6
  • units: percent
  • var_id: trend_bins
  • long_name: Water Vapor Path Trend bins
  • names: Water Vapor Path Trend bins
  • units: percent
  • long_name: Water Vapor Path Trend bins left
  • var_id: trend_bins
  • names: Water Vapor Path Trend bins left
  • units: percent
  • long_name: Water Vapor Path Trend bins right
  • var_id: trend_bins_right
  • names: Water Vapor Path Trend bins right
  • units: percent
  • long_name: Water Vapor Path Trends in percent per decade for ERA5
  • var_id: prw_trend
  • names: Water Vapor Path Trends in percent per decade for ERA5
  • units: percent
  • var_id: prw_trend
  • long_name: Water Vapor Path Trends in percent per decade for RSS
  • names: Water Vapor Path Trends in percent per decade for RSS

Co-ordinate Variables

Coverage
Temporal Range
Start time:
1998-01-01T12:00:00
End time:
2014-12-31T12:00:00
Geographic Extent

 
90.0000°
 
-180.0000°
 
180.0000°
 
-90.0000°