Dataset
Chapter 6 of the Working Group I Contribution to the IPCC Sixth Assessment Report - Input data for Figure 6.22 and Figure 6.24 (v20220824)
Abstract
Input data for figures 6.22 and 6.24 from Chapter 6 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).
Figure 6.22 shows time evolution of the effects of changes in short-lived climate forcers (SLCFs) and hydrofluorocarbons (HFCs) on global surface air temperature (GSAT) across the WGI core set of Shared Socio-economic Pathways (SSPs).
Figure 6.24 shows effects of changes in short-lived climate forcers (SLCFs) and hydrofluorocarbons (HFCs) on global surface air temperature (GSAT) across the WGI core set of Shared Socio-economic Pathways (SSPs).
---------------------------------------------------
How to cite this dataset
---------------------------------------------------
When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates:
Szopa, S., V. Naik, B. Adhikary, P. Artaxo, T. Berntsen, W.D. Collins, S. Fuzzi, L. Gallardo, A. Kiendler-Scharr, Z. Klimont, H. Liao, N. Unger, and P. Zanis, 2021: Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 817–922, doi:10.1017/9781009157896.008.
---------------------------------------------------
Figure subpanels
---------------------------------------------------
Figure 6.22 has 1 panel, with input data provided for this panel.
Figure 6.24 has 2 subpanels, with input data provided for both panels.
---------------------------------------------------
List of data provided
---------------------------------------------------
This dataset contains:
- Effects of net aerosols, methane, tropospheric ozone and hydrofluorocarbons (HFCs; with lifetimes <50years), and the sum of these, relative to the year 2019 and to the year 1750.
- The GSAT changes are based on the assessed historic and future evolution of effective radiative forcing (ERF; Section 7.3.5). The temperature responses to the ERFs are calculated with an impulse response function with an equilibrium climate sensitivity of 3.0°C for a doubling of atmospheric CO2 (feedback parameter of –1.31 W m–2 °C–1, see Cross-Chapter Box 7.1). The vertical bars to the right in each panel show the uncertainties (5–95% ranges) for the GSAT change between 2019 and 2100.
Further details on data sources and processing are available in the chapter data table (Table 6.SM.3).
---------------------------------------------------
Data provided in relation to figures
---------------------------------------------------
Data provided in relation to figures 6.22 and 6.24:
- Data file: AR6_ERF_1750-2019.csv: ERF derived from FAiR
- Data file: AR6_ERF_minorGHGs_1750-2019.csv: ERF derived from FAiR
- Data file: recommended_irf_from_2xCO2_2021_02_25_222758.csv: Impulse response function (IRF) from AR6
The folder SSPs (SSP scenario ERF from FAIR) contains the following file formats:
ERF_${scenario}$_${component}$_1750-2500.csv, with:
- $(scenario): the name of the scenario : ssp119, ssp126, ssp245, ssp334, ssp370, ssp370-low-nTCF-aerchemmip, ssp370-low-nTCF-gidden, ssp434, ssp460, ssp534-over, ssp585
- $(component): blank, or 'minor GHGs'
The folder slcf_warming_ranges (uncertainties in dGSAT from FAIR) contains the following file formats:
slcf_warming_ranges_${scenario)_$(uncertainty).csv, with:
- ${scenario}: the name of the scenario : ssp119, ssp126, ssp245, ssp334, ssp370, ssp370-lowNTCF-aerchemmip, ssp370-lowNTCF-gidden, ssp434, ssp460, ssp534-over, ssp585
- ${uncertainty}: percentiles of warming: p05, p16, p50, p84, p95
---------------------------------------------------
Notes on reproducing the figures from the provided data
---------------------------------------------------
Panels were plotted using Python and the code has been embedded in Jupyter notebooks for reproducibility - code is available in the GitHub repository linked in the documentation.
---------------------------------------------------
Sources of additional information
---------------------------------------------------
The following weblinks are provided in the Related Documents section of this catalogue record:
- Link to Figure 6.22 on the IPCC AR6 website
- Link to Figure 6.24 on the IPCC AR6 website
- Link to the report component containing the figures (Chapter 6)
- Link to the Supplementary Material for Chapter 6, which contains details on the input data used in Table 6.SM.3
- Link to the GitHub repository containing the Jupyter notebooks used to run the code associated with these figures.
- Link to the code for the figures, archived on Zenodo.
Details
Previous Info: |
No news update for this record
|
---|---|
Previously used record identifiers: |
No related previous identifiers.
|
Access rules: |
Public data: access to these data is available to both registered and non-registered users.
Use of these data is covered by the following licence(s): http://creativecommons.org/licenses/by/4.0/ When using these data you must cite them correctly using the citation given on the CEDA Data Catalogue record. |
Data lineage: |
Data produced by Intergovernmental Panel on Climate Change (IPCC) authors and supplied for archiving at the Centre for Environmental Data Analysis (CEDA) by the Technical Support Unit (TSU) for IPCC Working Group I (WGI). |
Data Quality: |
Data as provided by the IPCC
|
File Format: |
CSV, txt
|
Related Documents
Process overview
Title | Caption for Figure 6.22 and 6.24 from Chapter 6 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) |
Abstract | Figure 6.22 | Time evolution of the effects of changes in short-lived climate forcers (SLCFs) and hydrofluorocarbons (HFCs) on global surface air temperature (GSAT) across the WGI core set of Shared Socio-Economic Pathways (SSPs). Effects of net aerosols, methane, tropospheric ozone and hydrofluorocarbons (HFCs; with lifetimes <50years), and the sum of these, relative to the year 2019 and to the year 1750. The GSAT changes are based on the assessed historic and future evolution of effective radiative forcing (ERF; Section 7.3.5). The temperature responses to the ERFs are calculated with an impulse response function with an equilibrium climate sensitivity of 3.0°C for a doubling of atmospheric CO2 (feedback parameter of –1.31 W m–2°C–1, see Cross-Chapter Box 7.1). The vertical bars to the right in each panel show the uncertainties (5–95% ranges) for the GSAT change between 2019 and 2100. Further details on data sources and processing are available in the chapter data table (Table 6.SM.3). Figure 6.24 | Effects of changes in short-lived climate forcers (SLCFs) and hydrofluorocarbons (HFCs) on global surface air temperature (GSAT) across the WGI core set of Shared Socio-economic Pathways (SSPs). Effects of net aerosols, methane, tropospheric ozone and hydrofluorocarbons (HFCs; with lifetimes <50years), are compared with those of total anthropogenic forcing for 2040 and 2100 relative to the year 2019. The GSAT changes are based on the assessed historic and future evolution of effective radiative forcing (ERF; Section 7.3.5). The temperature responses to the ERFs are calculated with an impulse response function with an equilibrium climate sensitivity of 3.0°C for a doubling of atmospheric CO2 (feedback parameter of –1.31 W m–2°C–1; Cross-Chapter Box 7.1). Uncertainties are 5–95% ranges. The scenario total (grey bar) includes all anthropogenic forcings (long- and short-lived climate forcers, and land-use changes) whereas the white diamonds and bars show the net effects of SLCFs and HFCs and their uncertainties. Further details on data sources and processing are available in the chapter data table (Table 6.SM.3). |
Input Description | None |
Output Description | None |
Software Reference | None |
- units: W/m2
- var_id: aerosol-cloud_interactions
- long_name: Aerosol-cloud interactions
- units: W/m2
- var_id: aerosol-radiation_interactions
- long_name: Aerosol-radiation interactions
- units: W/m2
- var_id: bc_on_snow
- long_name: Black carbon on snow
- units: W/m2
- var_id: C2F6
- long_name: C2F6
- units: W/m2
- var_id: C3F8
- long_name: C3F8
- units: W/m2
- var_id: C7F16
- long_name: C7F16
- units: W/m2
- var_id: C8F18
- long_name: C8F18
- long_name: CCl4
- var_id: CCl4
- units: W/m2
- units: W/m2
- var_id: CF4
- long_name: CF4
- units: W/m2
- long_name: CFC-11
- var_id: CFC-11
- units: W/m2
- var_id: CFC-112
- long_name: CFC-112
- units: W/m2
- var_id: CFC-112a
- long_name: CFC-112a
- units: W/m2
- long_name: CFC-113
- var_id: CFC-113
- units: W/m2
- var_id: CFC-113a
- long_name: CFC-113a
- units: W/m2
- var_id: CFC-114
- long_name: CFC-114
- units: W/m2
- var_id: CFC-114a
- long_name: CFC-114a
- units: W/m2
- var_id: CFC-115
- long_name: CFC-115
- units: W/m2
- long_name: CFC-12
- var_id: CFC-12
- units: W/m2
- var_id: CFC-13
- long_name: CFC-13
- units: W/m2
- var_id: CH2Cl2
- long_name: CH2Cl2
- units: W/m2
- var_id: CH3Br
- long_name: CH3Br
- var_id: CH3CCl3
- units: W/m2
- long_name: CH3CCl3
- long_name: CH3Cl
- var_id: CH3Cl
- units: W/m2
- units: W/m2
- var_id: CHCl3
- long_name: CHCl3
- units: W/m2
- var_id: co2
- long_name: CO$_2$
- units: W/m2
- var_id: HCFC-124
- long_name: HCFC-124
- units: W/m2
- var_id: HCFC-133a
- long_name: HCFC-133a
- units: W/m2
- var_id: HCFC-141b
- long_name: HCFC-141b
- units: W/m2
- var_id: HCFC-142b
- long_name: HCFC-142b
- units: W/m2
- var_id: HCFC-22
- long_name: HCFC-22
- units: W/m2
- var_id: HCFC-31
- long_name: HCFC-31
- units: W/m2
- var_id: HFC-125
- long_name: HFC-125
- units: W/m2
- var_id: HFC-134a
- long_name: HFC-134a
- units: W/m2
- var_id: HFC-143a
- long_name: HFC-143a
- units: W/m2
- var_id: HFC-152a
- long_name: HFC-152a
- units: W/m2
- var_id: HFC-227ea
- long_name: HFC-227ea
- units: W/m2
- var_id: HFC-23
- long_name: HFC-23
- units: W/m2
- var_id: HFC-236fa
- long_name: HFC-236fa
- units: W/m2
- var_id: HFC-245fa
- long_name: HFC-245fa
- units: W/m2
- var_id: HFC-32
- long_name: HFC-32
- units: W/m2
- var_id: HFC-365mfc
- long_name: HFC-365mfc
- units: W/m2
- var_id: HFC-43-10mee
- long_name: HFC-43-10mee
- units: W/m2
- var_id: Halon-1211
- long_name: Halon-1211
- units: W/m2
- var_id: Halon-1301
- long_name: Halon-1301
- units: W/m2
- var_id: Halon-2402
- long_name: Halon-2402
- units: W/m2
- var_id: ch4
- long_name: Methane (CH$_4$)
- units: W/m2
- var_id: NF3
- long_name: NF3
- units: W/m2
- var_id: n2o
- long_name: Nitrous oxide (N$_2$O)
- units: W/m2
- var_id: other_wmghg
- long_name: Other well-mixed greenhouse gases
- units: W/m2
- var_id: o3
- long_name: Ozone (O$_3$)
- units: W/m2
- var_id: SF6
- long_name: SF6
- units: W/m2
- var_id: SO2F2
- long_name: SO2F2
- var_id: solar
- units: W/m2
- long_name: Solar
- units: W/m2
- var_id: total
- long_name: Total
- units: W/m2
- var_id: total_anthropogenic
- long_name: Total anthropogenic
- units: W/m2
- var_id: total_natural
- long_name: Total natural
- units: W/m2
- var_id: aerosol
- long_name: aerosol
- units: W/m2
- var_id: anthro
- long_name: anthro
- units: W/m2
- var_id: c-C4F8
- long_name: c-C4F8
- units: W/m2
- var_id: contrails
- long_name: condensation trails
- units: W/m2
- var_id: h2o_stratospheric
- long_name: h2o_stratospheric
- units: W/m2
- var_id: hfc
- long_name: hfc
- units: W/m2
- var_id: i-C6F14
- long_name: i-C6F14
- units: W/m2
- var_id: land_use
- long_name: land-use change
- units: W/m2
- var_id: n-C4F10
- long_name: n-C4F10
- units: W/m2
- var_id: n-C5F12
- long_name: n-C5F12
- units: W/m2
- var_id: n-C6F14
- long_name: n-C6F14
- units: W/m2
- var_id: slcf
- long_name: slcf
- units: W/m2
- var_id: volcanic
- long_name: volcanic
- long_name: year
- var_id: year
- units: year
Co-ordinate Variables
Temporal Range
2019-01-01T00:00:00
2100-12-31T23:59:59
Geographic Extent
90.0000° |
||
-180.0000° |
180.0000° |
|
-90.0000° |