This website uses cookies. By continuing to use this website you are agreeing to our use of cookies. 

Dataset

 

HadISDH marine: gridded global monthly ocean surface humidity data version 1.1.0.2020f

Update Frequency: Not Planned
Status: Completed
Online Status: ONLINE
Publication State: Published
Publication Date: 2021-04-28
Download Stats: last 12 months

Abstract

This is the HadISDH marine 1.1.0.2020f version of the Met Office Hadley Centre Integrated Surface Dataset of Humidity (HadISDH). HadISDH-marine s a near-global gridded monthly mean marine surface humidity climate monitoring product. It is created from in situ observations of air temperature and dew point temperature from ships. The observations have been quality controlled and bias-adjusted. Uncertainty estimates for observation issues and gridbox sampling are provided (see data quality statement section below). The data are provided by the Met Office Hadley Centre and this version spans 1/1/1973 to 31/12/2020.

The data are monthly gridded (5 degree by 5 degree) fields. Products are available for temperature and six humidity variables: specific humidity (q), relative humidity (RH), dew point temperature (Td), wet bulb temperature (Tw), vapour pressure (e), dew point depression (DPD).

This version extends the 1.0.0.2019f version to the end of 2020 and constitutes a minor update to HadISDH due to change in method for calculating gridbox monthly means. All other processing steps for HadISDH remain identical. Users are advised to read the update document in the Docs section for full details.

To keep informed about updates, news and announcements follow the HadOBS team on twitter @metofficeHadOBS.

For more detailed information e.g bug fixes, routine updates and other exploratory analysis, see the HadISDH blog: http://hadisdh.blogspot.co.uk/

References:

When using the dataset in a paper please cite the following papers (see Docs for link
to the publications) and this dataset (using the "citable as" reference):

Willett, K. M., Dunn, R. J. H., Kennedy, J. J. and Berry, D. I., 2020: Development of
the HadISDH marine humidity climate monitoring dataset. Earth System Sciences Data,
12, 2853-2880, https://doi.org/10.5194/essd-12-2853-2020

Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E.,
Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W., Ji, Z., Lawrimore, J.,
Rayner, N. A., Rosenhagen, G. and Smith, S. R., ICOADS Release 3.0: A major update to
the historical marine climate record. International Journal of Climatology.
doi:10.1002/joc.4775.

Citable as:  Willett, K.M.; Dunn, R.J.H.; Kennedy, J.J.; Berry, D.I. (2021): HadISDH marine: gridded global monthly ocean surface humidity data version 1.1.0.2020f. Centre for Environmental Data Analysis, date of citation. https://catalogue.ceda.ac.uk/uuid/c928ef392244426b9473af92a16b0daf
Abbreviation: Not defined
Keywords: HadISDH, humidity, surface, marine, gridded, station, specific humidity, temperature, dew point temperature, wet bulb temperature, dew point temperature, vapour pressure, in-situ

Details

Previous Info:
No news update for this record
Previously used record identifiers:
No related previous identifiers.
Access rules:
Public data: access to these data is available to both registered and non-registered users.
Use of these data is covered by the following licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/. When using these data you must cite them correctly using the citation given on the CEDA Data Catalogue record.
Data lineage:

HadISDH-marine is a global ocean surface (~10 m) humidity dataset and is produced by the Met Office Hadley Centre in collaboration with NOC. It is based on the sub-daily ship observations from ICOADS. It is passed to CEDA for archiving and distribution.

Data Quality:
Uncertainty estimates are provided as part of the dataset both at the station and gridbox level, this includes information covering station uncertainty (climatological, homogenisation and measurement uncertainty), gridbox spatial and temporal sampling uncertainty and combined station and sampling uncertainty. See dataset associated documentation for full details.
File Format:
Data are NetCDF formatted.

Process overview

This dataset was generated by the computation detailed below.
Title HadISDH marine: gridded global ocean surface (~10 m) humidity dataset produced by the Met Office Hadley Centre
Abstract HadISDH utilises simultaneous sub-daily temperature and dew point temperature data from ICOADS ship data. All humidity variables are calculated at hourly resolution. Quality control, buddy checking and bias adjustment is applied at hourly resolution to adjust all observations to an observing height of 10 m, accounting for changing ship heights over time, and to adjust all non-ventilated instruments to mitigate the moist bias. Gridded monthly means, monthly mean anomalies and 1981 to 2010 climatologies are created. See Docs 'HadISDH.marine process diagram'. Observation measurement, climatological, whole number presence and bias adjustment uncertainties are estimated for each observation and then gridded. 5° by 5° gridboxes are centred on -177.5°W and -87.5°S to 177.5°E and 87.5°N. Given the uneven distribution of observations over time and space, sampling uncertainty is estimated for each gridbox month. For greater detail please see: Willett, K. M., Dunn, R. J. H., Kennedy, J. J. and Berry, D. I.: Development of the HadISDH marine humidity climate monitoring dataset. Earth System Sciences Data, in review, doi:XX.XXXX/essd-XX-XXXX-2020, 2020. Docs contains links to this publication.
Input Description None
Output Description None
Software Reference None
  • long_name: climatology period boundaries
  • var_id: climbounds
  • names: climatology period boundaries
  • var_id: abs_clmunc
  • units: hPa
  • long_name: correlated 2 sigma uncertainty for climatology for actual values
  • names: correlated 2 sigma uncertainty for climatology for actual values
  • long_name: correlated 2 sigma uncertainty for climatology for anomaly values
  • var_id: anoms_clmunc
  • units: hPa
  • names: correlated 2 sigma uncertainty for climatology for anomaly values
  • long_name: correlated 2 sigma uncertainty for instrument bias adjustments for actual values
  • var_id: abs_instadjunc
  • units: hPa
  • names: correlated 2 sigma uncertainty for instrument bias adjustments for actual values
  • var_id: anoms_instadjunc
  • long_name: correlated 2 sigma uncertainty for instrument bias adjustments for anomaly values
  • units: hPa
  • names: correlated 2 sigma uncertainty for instrument bias adjustments for anomaly values
  • var_id: abs_hgtadjunc
  • units: hPa
  • long_name: correlated 2 sigma uncertainty for ship height bias adjustments for actual values
  • names: correlated 2 sigma uncertainty for ship height bias adjustments for actual values
  • long_name: correlated 2 sigma uncertainty for ship height bias adjustments for anomaly values
  • var_id: anoms_hgtadjunc
  • units: hPa
  • names: correlated 2 sigma uncertainty for ship height bias adjustments for anomaly values
  • long_name: gridbox mean pseudo-station variance (sbarSQ for sampling uncertainty) for gridbox actual values
  • var_id: abs_sbarsq
  • units: hPa
  • names: gridbox mean pseudo-station variance (sbarSQ for sampling uncertainty) for gridbox actual values
  • var_id: anoms_sbarsq
  • long_name: gridbox mean pseudo-station variance (sbarSQ for sampling uncertainty) for gridbox anomaly values
  • units: hPa
  • names: gridbox mean pseudo-station variance (sbarSQ for sampling uncertainty) for gridbox anomaly values
  • long_name: intersite correlation (rbar) for actual values
  • var_id: abs_rbar
  • units: 1
  • names: intersite correlation (rbar) for actual values
  • var_id: anoms_rbar
  • long_name: intersite correlation (rbar) for anomalies
  • units: 1
  • names: intersite correlation (rbar) for anomalies
  • long_name: mean number of pseudo stations within gridbox
  • units: 1
  • var_id: meanpseudostncount
  • names: mean number of pseudo stations within gridbox
  • long_name: month of year
  • var_id: month
  • names: month of year
  • standard_name: air_temperature
  • long_name: near surface (~10m) air temperature
  • units: deg C
  • var_id: tas
  • names: air_temperature, near surface (~10m) air temperature
  • var_id: tasa
  • units: deg C
  • long_name: near surface (~10m) air temperature anomaly
  • names: near surface (~10m) air temperature anomaly
  • long_name: near surface (~10m) air temperature climatological standard deviations
  • var_id: clmstd
  • units: deg C
  • names: near surface (~10m) air temperature climatological standard deviations
  • var_id: clm
  • long_name: near surface (~10m) air temperature climatology
  • units: deg C
  • names: near surface (~10m) air temperature climatology
  • standard_name: dew_point_depression
  • var_id: dpds
  • units: deg C
  • long_name: near surface (~10m) dewpoint depression
  • names: dew_point_depression, near surface (~10m) dewpoint depression
  • var_id: dpdsa
  • long_name: near surface (~10m) dewpoint depression anomaly
  • units: deg C
  • names: near surface (~10m) dewpoint depression anomaly
  • var_id: clmstd
  • long_name: near surface (~10m) dewpoint depression climatological standard deviations
  • units: deg C
  • names: near surface (~10m) dewpoint depression climatological standard deviations
  • var_id: clm
  • units: deg C
  • long_name: near surface (~10m) dewpoint depression climatology
  • names: near surface (~10m) dewpoint depression climatology
  • standard_name: dew_point_temperature
  • var_id: tds
  • long_name: near surface (~10m) dewpoint temperature
  • units: deg C
  • names: dew_point_temperature, near surface (~10m) dewpoint temperature
  • long_name: near surface (~10m) dewpoint temperature anomaly
  • var_id: tdsa
  • units: deg C
  • names: near surface (~10m) dewpoint temperature anomaly
  • long_name: near surface (~10m) dewpoint temperature climatological standard deviations
  • var_id: clmstd
  • units: deg C
  • names: near surface (~10m) dewpoint temperature climatological standard deviations
  • var_id: clm
  • long_name: near surface (~10m) dewpoint temperature climatology
  • units: deg C
  • names: near surface (~10m) dewpoint temperature climatology
  • var_id: hurs
  • standard_name: relative_humidity
  • units: %rh
  • long_name: near surface (~10m) relative humidity
  • names: relative_humidity, near surface (~10m) relative humidity
  • var_id: hursa
  • long_name: near surface (~10m) relative humidity anomaly
  • units: %rh
  • names: near surface (~10m) relative humidity anomaly
  • var_id: clmstd
  • long_name: near surface (~10m) relative humidity climatological standard deviations
  • units: %rh
  • names: near surface (~10m) relative humidity climatological standard deviations
  • var_id: clm
  • units: %rh
  • long_name: near surface (~10m) relative humidity climatology
  • names: near surface (~10m) relative humidity climatology
  • units: g/kg
  • standard_name: specific_humidity
  • long_name: near surface (~10m) specific humidity
  • var_id: huss
  • names: specific_humidity, near surface (~10m) specific humidity
  • units: g/kg
  • long_name: near surface (~10m) specific humidity anomaly
  • var_id: hussa
  • names: near surface (~10m) specific humidity anomaly
  • units: g/kg
  • var_id: clmstd
  • long_name: near surface (~10m) specific humidity climatological standard deviations
  • names: near surface (~10m) specific humidity climatological standard deviations
  • units: g/kg
  • var_id: clm
  • long_name: near surface (~10m) specific humidity climatology
  • names: near surface (~10m) specific humidity climatology
  • var_id: vps
  • long_name: near surface (~10m) vapor pressure
  • units: hPa
  • standard_name: water_vapor_partial_pressure_in_air
  • names: water_vapor_partial_pressure_in_air, near surface (~10m) vapor pressure
  • long_name: near surface (~10m) vapor pressure anomaly
  • var_id: vpsa
  • units: hPa
  • names: near surface (~10m) vapor pressure anomaly
  • long_name: near surface (~10m) vapor pressure climatological standard deviations
  • var_id: clmstd
  • units: hPa
  • names: near surface (~10m) vapor pressure climatological standard deviations
  • var_id: clm
  • long_name: near surface (~10m) vapor pressure climatology
  • units: hPa
  • names: near surface (~10m) vapor pressure climatology
  • var_id: tws
  • units: deg C
  • standard_name: wet_bulb_temperature
  • long_name: near surface (~10m) wetbulb temperature
  • names: wet_bulb_temperature, near surface (~10m) wetbulb temperature
  • var_id: twsa
  • long_name: near surface (~10m) wetbulb temperature anomaly
  • units: deg C
  • names: near surface (~10m) wetbulb temperature anomaly
  • var_id: clmstd
  • long_name: near surface (~10m) wetbulb temperature climatological standard deviations
  • units: deg C
  • names: near surface (~10m) wetbulb temperature climatological standard deviations
  • var_id: clm
  • units: deg C
  • long_name: near surface (~10m) wetbulb temperature climatology
  • names: near surface (~10m) wetbulb temperature climatology
  • var_id: gridcount
  • long_name: number of 1by1 daily grids within gridbox
  • units: 1
  • names: number of 1by1 daily grids within gridbox
  • var_id: clmstdgridcount
  • units: 1
  • long_name: number of 1by1 daily grids within gridbox climatological standard deviations
  • names: number of 1by1 daily grids within gridbox climatological standard deviations
  • long_name: number of 1by1 daily grids within gridbox climatology
  • var_id: clmgridcount
  • units: 1
  • names: number of 1by1 daily grids within gridbox climatology
  • long_name: number of observations within gridbox
  • var_id: obscount
  • units: 1
  • names: number of observations within gridbox
  • var_id: clmstdobscount
  • long_name: number of observations within gridbox climatological standard deviations
  • units: 1
  • names: number of observations within gridbox climatological standard deviations
  • var_id: clmobscount
  • units: 1
  • long_name: number of observations within gridbox climatology
  • names: number of observations within gridbox climatology
  • long_name: number of pseudo stations within gridbox
  • var_id: pseudostncount
  • units: 1
  • names: number of pseudo stations within gridbox
  • var_id: abs_obsunc
  • long_name: uncorrelated 2 sigma combined observation uncertainty for actual values
  • units: hPa
  • names: uncorrelated 2 sigma combined observation uncertainty for actual values
  • var_id: anoms_obsunc
  • units: hPa
  • long_name: uncorrelated 2 sigma combined observations uncertainty for anomaly values
  • names: uncorrelated 2 sigma combined observations uncertainty for anomaly values
  • long_name: uncorrelated 2 sigma sampling uncertainty for gridbox actual values
  • var_id: abs_sampunc
  • units: hPa
  • names: uncorrelated 2 sigma sampling uncertainty for gridbox actual values
  • long_name: uncorrelated 2 sigma sampling uncertainty for gridbox anomaly values
  • var_id: anoms_sampunc
  • units: hPa
  • names: uncorrelated 2 sigma sampling uncertainty for gridbox anomaly values
  • var_id: abs_measunc
  • units: hPa
  • long_name: uncorrelated 2 sigma uncertainty for measurement for actual values
  • names: uncorrelated 2 sigma uncertainty for measurement for actual values
  • long_name: uncorrelated 2 sigma uncertainty for measurement for anomaly values
  • var_id: anoms_measunc
  • units: hPa
  • names: uncorrelated 2 sigma uncertainty for measurement for anomaly values
  • long_name: uncorrelated 2 sigma uncertainty for whole number reporting for actual values
  • var_id: abs_wholeunc
  • units: hPa
  • names: uncorrelated 2 sigma uncertainty for whole number reporting for actual values
  • var_id: anoms_wholeunc
  • long_name: uncorrelated 2 sigma uncertainty for whole number reporting for anomaly values
  • units: hPa
  • names: uncorrelated 2 sigma uncertainty for whole number reporting for anomaly values
  • var_id: abs_stdunc
  • long_name: uncorrelated combined 2 sigma uncertainty for gridbox actual values
  • units: hPa
  • names: uncorrelated combined 2 sigma uncertainty for gridbox actual values
  • var_id: anoms_stdunc
  • units: hPa
  • long_name: uncorrelated combined 2 sigma uncertainty for gridbox anomalu values
  • names: uncorrelated combined 2 sigma uncertainty for gridbox anomalu values

Co-ordinate Variables

  • standard_name: latitude
  • var_id: latitude
  • long_name: gridbox centre latitude
  • units: degrees_north
  • names: latitude, gridbox centre latitude
  • units: degrees_east
  • standard_name: longitude
  • long_name: gridbox centre longitude
  • var_id: longitude
  • names: longitude, gridbox centre longitude
  • long_name: latitude gridbox boundaries
  • standard_name: latitude
  • var_id: bounds_lat
  • names: latitude, latitude gridbox boundaries
  • long_name: longitude gridbox boundaries
  • var_id: bounds_lon
  • standard_name: longitude
  • names: longitude, longitude gridbox boundaries
  • long_name: time
  • standard_name: time
  • var_id: time
  • names: time
  • long_name: time period boundaries
  • var_id: bounds_time
  • standard_name: time
  • names: time, time period boundaries
Coverage
Temporal Range
Start time:
1973-01-01T00:00:00
End time:
2020-12-31T23:59:59
Geographic Extent

 
90.0000°
 
-180.0000°
 
180.0000°
 
-90.0000°